博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ThreadLocal源码分析(转)
阅读量:4965 次
发布时间:2019-06-12

本文共 10431 字,大约阅读时间需要 34 分钟。

阅读总结:

  ThreadLocal内部使用静态map存储,每个变量对应一个hashcode,不需要指定key值,后台动态生成,good!

  每个变量ThreadLocal内部分配Entry,获取值时,通过变量找到Entry,找到对应hashcode,获取值;

  设置值同理。

  init部分,有点晕忽,写的乱七八糟,查了下源代码,其实就是线程初始化的时候,新建了个ThreadLocalMap变量,和什么子线程父线程木有任何关系。

  

 

在阅读《Java Concurrency In Practice》时,书中提到ThreadLocal是一种更为规范常用的Thread Confine方式。于是想仔细分析一下ThreadLocal的实现方式。曾经转载了一篇关于ThreadLocal的文章:,其中提到ThreadLocal的实现方式是声明一个Hashtable,然后以Thread.currentThread()为key,变量的拷贝为value。今天阅读源码才知道实现方式已经大为改变,下面来看代码。

/**
* ThreadLocals rely on per-thread linear-probe hash maps attached to each
* thread (Thread.threadLocals and inheritableThreadLocals). The ThreadLocal
* objects act as keys, searched via threadLocalHashCode. This is a custom
* hash code (useful only within ThreadLocalMaps) that eliminates collisions
* in the common case where consecutively constructed ThreadLocals are used
* by the same threads, while remaining well-behaved in less common cases.
*/
private final int threadLocalHashCode = nextHashCode();
/**
* The next hash code to be given out. Updated atomically. Starts at zero.
*/
private static AtomicInteger nextHashCode = new AtomicInteger();
/**
* The difference between successively generated hash codes - turns implicit
* sequential thread-local IDs into near-optimally spread multiplicative
* hash values for power-of-two-sized tables.
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* Returns the next hash code.
*/
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
/**
* Creates a thread local variable.
*/
public ThreadLocal() {
}
ThreadLocal只有三个变量,从构造函数知道,在创建一个ThreadLocal实例时,只是调用nextHashCode方法将nextHashCode的值赋给实例的threadLocalHashCode,然后nextHashCode的值增加HASH_INCREMENT这个值。 因此ThreadLocal实例的变量只有threadLocalHashCode,而且是final的,用来区分不同的ThreadLocal实例。
再来看其get方法:
/**
* Returns the value in the current thread's copy of this thread-local
* variable. If the variable has no value for the current thread, it is
* first initialized to the value returned by an invocation of the
* {@link #initialValue} method.
* @return the current thread's value of this thread-local
*/
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null)
return (T) e.value;
}
return setInitialValue();
}
其中调用getMap(Thread t)返回ThreadLocalMap,ThreadLocalMap是内部静态类,部分代码如下:
/**
* ThreadLocalMap is a customized hash map suitable only for maintaining
* thread local values. No operations are exported outside of the
* ThreadLocal class. The class is package private to allow declaration of
* fields in class Thread. To help deal with very large and long-lived
* usages, the hash table entries use WeakReferences for keys. However,
* since reference queues are not used, stale entries are guaranteed to be
* removed only when the table starts running out of space.
*/
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using its main ref
* field as the key (which is always a ThreadLocal object). Note that
* null keys (i.e. entry.get() == null) mean that the key is no longer
* referenced, so the entry can be expunged from table. Such entries are
* referred to as "stale entries" in the code that follows.
*/
static class Entry extends WeakReference<ThreadLocal> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal k, Object v) {
super(k);
value = v;
}
}
/**
* The initial capacity -- MUST be a power of two.
*/
private static final int INITIAL_CAPACITY = 16;
/**
* The table, resized as necessary. table.length MUST always be a power
* of two.
*/
private Entry[] table;
/**
* The number of entries in the table.
*/
private int size = 0;
/**
* The next size value at which to resize.
*/
private int threshold; // Default to 0
Entry继承WeakReference,通过其注释并结合WeakReference的功能,我们知道:一旦没有指向 key 的强引用, ThreadLocalMap 在 GC 后将自动删除相关的 entry。ThreadLocalMap采用数组来保存Entry,并且Entry中以ThreadLocal为key,初始大小为16.
        接着看ThreadLocalMap的constructor:
/**
* Construct a new map initially containing (firstKey, firstValue).
* ThreadLocalMaps are constructed lazily, so we only create one when we
* have at least one entry to put in it.
*/
ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
/**
* Construct a new map including all Inheritable ThreadLocals from given
* parent map. Called only by createInheritedMap.
* @param parentMap
*            the map associated with parent thread.
*/
private ThreadLocalMap(ThreadLocalMap parentMap) {
Entry[] parentTable = parentMap.table;
int len = parentTable.length;
setThreshold(len);
table = new Entry[len];
for (int j = 0; j < len; j++) {
Entry e = parentTable[j];
if (e != null) {
ThreadLocal key = e.get();
if (key != null) {
Object value = key.childValue(e.value);
Entry c = new Entry(key, value);
int h = key.threadLocalHashCode & (len - 1);
while (table[h] != null)
h = nextIndex(h, len);
table[h] = c;
size++;
}
}
}
}
ThreadLocalMap有两个构造函数,可以直接传入ThreadLcoal-value对,也可以传入一个ThreadLocalMap,传入ThreadLocalMap的时候,会依次将其Entry存放在table中。接着来分析get方法:
/**
* Get the entry associated with key. This method itself handles only
* the fast path: a direct hit of existing key. It otherwise relays to
* getEntryAfterMiss. This is designed to maximize performance for
* direct hits, in part by making this method readily inlinable.
* @param key
*            the thread local object
* @return the entry associated with key, or null if no such
*/
private Entry getEntry(ThreadLocal key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
通过实例变量threadLocalHashCode算出下标,然后返回其值。set和remove方法类似。
继续看ThreadLocal类的get方法,通过getMap(Thread t)返回ThreadLocalMap,然后从ThreadLocalMap中通过getEntry(ThreadLocal key) 取出值。下面继续看getMap(Thread t)方法:
/**
* Get the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
* @param t
*            the current thread
* @return the map
*/
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
可以看出其返回的是线程的一个实例变量。由此可知Thread类也持有ThreadLocalMap,这样每个线程的变量都存放在自己的ThreadLocalMap中,可谓名符其实。
继续看Thread类如何操作ThreadLocalMap:
/*
* ThreadLocal values pertaining to this thread. This map is maintained by
* the ThreadLocal class.
*/
ThreadLocal.ThreadLocalMap threadLocals = null;
/*
* InheritableThreadLocal values pertaining to this thread. This map is
* maintained by the InheritableThreadLocal class.
*/
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
Thread类中声明了两个ThreadLocalMap变量,
/**
* Initializes a Thread.
* @param g
*            the Thread group
* @param target
*            the object whose run() method gets called
* @param name
*            the name of the new Thread
* @param stackSize
*            the desired stack size for the new thread, or zero to indicate
*            that this parameter is to be ignored.
*/
private void init(ThreadGroup g, Runnable target, String name, long stackSize) {
Thread parent = currentThread();
SecurityManager security = System.getSecurityManager();
if (g == null) {
/* Determine if it's an applet or not */
/*
* If there is a security manager, ask the security manager what to
* do.
*/
if (security != null) {
g = security.getThreadGroup();
}
/*
* If the security doesn't have a strong opinion of the matter use
* the parent thread group.
*/
if (g == null) {
g = parent.getThreadGroup();
}
}
/*
* checkAccess regardless of whether or not threadgroup is explicitly
* passed in.
*/
g.checkAccess();
/*
* Do we have the required permissions?
*/
if (security != null) {
if (isCCLOverridden(getClass())) {
security.checkPermission(SUBCLASS_IMPLEMENTATION_PERMISSION);
}
}
g.addUnstarted();
this.group = g;
this.daemon = parent.isDaemon();
this.priority = parent.getPriority();
this.name = name.toCharArray();
if (security == null || isCCLOverridden(parent.getClass()))
this.contextClassLoader = parent.getContextClassLoader();
else
this.contextClassLoader = parent.contextClassLoader;
this.inheritedAccessControlContext = AccessController.getContext();
this.target = target;
setPriority(priority);
if (parent.inheritableThreadLocals != null)
this.inheritableThreadLocals =ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
/* Stash the specified stack size in case the VM cares */
this.stackSize = stackSize;
/* Set thread ID */
tid = nextThreadID();
}
在init方法中,存在着对inheritableThreadLocals的操作:
if (parent.inheritableThreadLocals != null)
this.inheritableThreadLocals =ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
而ThreadLocal的createInheritedMap方法则是调用ThreadLocalMap类传入ThreadLocalMap参数的构造函数。
也就是说在Thread类中,当前线程会调用init方法去初始一个线程,而在init方法中,会将当前线程的inheritableThreadLocals拷贝给等待初始化的线程。这让我联想起unix/linux系统中,父线程会调用fork()函数生成一个子线程,而且会把父线程大部分的信息拷贝给子线程。
         最后来看Thread类的exit方法:
/**
* This method is called by the system to give a Thread a chance to clean up
* before it actually exits.
*/
private void exit() {
if (group != null) {
group.remove(this);
group = null;
}
/* Aggressively null out all reference fields: see bug 4006245 */
target = null;
/* Speed the release of some of these resources */
threadLocals = null;
inheritableThreadLocals = null;
inheritedAccessControlContext = null;
blocker = null;
uncaughtExceptionHandler = null;
}
在线程真正终止前会执行这个方法,这个方法会把threadLocals和inheritableThreadLocals指向null。但我在Thread类中并没有看到对threadLocals的赋值,应该是通过ThreadLocal来设置的。
        写了个简单的Thread测试程序,只是想跟踪一下上述两个ThreadLocalMap变量的状态:
public class TimePrinter extends Thread {
public void run() {
while (true) {
try {
System.out.println(new Date(System.currentTimeMillis()));
} catch (Exception e) {
System.out.println(e);
}
}
}
static public void main(String args[]) {
TimePrinter tp1 = new TimePrinter();
tp1.start();
ThreadLocal t2 = new ThreadLocal();
t2.set("aaaaaaaaaaaaaaaaaaaaaaaa");
}
}
可以看到,启动一个线程,不停打印系统时间,然后通过ThreadLocal给当前线程添加一份字符串,观察有:

inheritableThreadLocals中有一个Entry,但value为null,threadLocals中有三个Entry,其中两个value不明,一个为ThreadLocal设置的值。不过我实在不知道其他三个Entry值是如何设置的,留个疑问。
总结:ThreadLocal实例只有一个threadLocalHashCode值,ThreadLocal给各个线程设置的值都是存在各个线程threadLocals里 。相比Hashtable的实现方式,现在的方式更为合理。当一个线程终止时,其inheritableThreadLocals和threadLocals均被置为null,于是通过TreadLocal也就无法访问这个线程;而当ThreadLocal被设置为null时,Thread里threadLocals就会移除key为ThreadLocal的Entry。Hashtable的实现方式则无法实现这一点。最为关键的是Hashtable的实现需要同步,所带来的性能损耗是很大的,而现在的方式则不需要同步。性能提升很大。

转载于:https://www.cnblogs.com/huxiaoyun90/p/3293172.html

你可能感兴趣的文章
LeetCode-Shortest Word Distance II
查看>>
机器学习中的凸优化基础
查看>>
Redis和Jedis简介以及Redis事物
查看>>
第三、四、五次会议汇总
查看>>
js高级程序设计学习笔记
查看>>
windows phone 8 mp3 编码及解码
查看>>
亚马逊副总裁谈Marketplace平台的个性化服务
查看>>
Jmeter(非GUI模式)教程
查看>>
curl HTTP Header
查看>>
世界上最方便的SharePoint移动客户端--Rshare
查看>>
MongoDB要点
查看>>
字段与属性的总结与比较
查看>>
[转]Linear Depth Buffer(线性深度缓冲区)
查看>>
05最小生成树_Prim
查看>>
centos iptables
查看>>
Mysql数据库日志
查看>>
Python基础-数据类型
查看>>
unity3d 移动与旋转 2
查看>>
MyEclipse安装Freemarker插件
查看>>
php 文件下载
查看>>